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ABSTRACT

The POGO study of large liquid fueled rockets,
such as the Saturn Vv, requires an accurate structural model.
In particular, the axial motion of the liquid propellant must
be accurately represented. There are in existence hydroelastic
models that may be used to represent liquid propellants which
are contained in ellipsoidal type tanks such as the Saturn
S-IVB or S-II liguid oxygen tanks. However, no corresponding
hydroelastic model exists for representing the liquid hydrogen
of these stages, where the containing tanks are cylindrical
but with inverted bulkheads.

As part of an effort to obtain a more detailed
structural model of the S-IVB, a hydroelastic model for the
liquid hydrogen was developed and is described in this
memorandum.

A computer program for finding the corresponding
liquid mass matrix is briefly described, and a sample problem
solved using this program. Two theoretical checks on the
computed mass matrix are made and it is shown that the accuracy
of the numerical procedure is very good.
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1. INTRODUCTION

In the POGO study of large liquid fueled space
vehicles, such as the Saturn V, it has been understood for
some time that an accurate structural model of the vehicle
is required. For this an accurate representation of the axial
motion of the liquid propellant, must be found. Furthermore,
it must be of a type that can be easily incorporated into an
overall structural model of the vehicle.

To this end a number of hydroelastic models have
been developed [l, 2]. Using such a model for the ligquid
(LOX) most of the observed Saturn V POGO instabilities have
been successfully predicted by closed loop analysis. There
are, however, some time points, notably during the S-IVB
first burn, at which inflight vibrations have been observed
but for which the analysis has predicted a large degree of
stability. This suggests that the structural model may need
refinement and in particular that a hydroelastic representa-
tion be used for the liquid hydrogen (LH2) as well as the
LOX.

Previously the LH2 has not received such careful

modelling as the LOX for several reasons. One reason is that
due to the stiff nature of the LH2 tank lower bulkhead and the

relatively small mass of the LH,, it was thought that any
vibrational activity of the LH, would be in a frequency range

above that of POGO. Another reason is that in POGO analysis
the LH, tank bottom pressure fluctuation, unlike the LOX,

has little influence on the engine thrust fluctuation. (For
an accurate determination this requires a hydroelastic
model [3].) Finally none of the existing hydroelastic models




are suitable for a liquid contained in a cylindrical tank
with an inverted lower bulkhead such as the S-IVB or
SII LH, tanks.

In this memorandum a hydroelastic model is derived
for a liquid contained in an elastic cylindrical tank whose
lower bulkhead is an inverted partial ellipsoid. The analysis
is based on the finite difference technique of Goldman [2]
but uses the variable mesh version of the finite difference
grid as detailed by Vandergraft ([4]. A computer program,
which can be used to compute the corresponding mass matrix
for the liguid is described and an example problem solved
using this program. The accuracy of the method is checked.

2. PROBLEM AND SYSTEM DEFINITION

The problem considered here is to find a liquid mass
matrix for the system whose cross section is shown in Figure 1.
The tank consists of a cylindrical portion, which, in general,
is capped at both ends by partial ellipsoids. The lower end
is made up of two ellipsoids; one is inverted and has center
01 while the other is regular with center at 02. The upper
end of the tank is capped by a semi-ellipsoid with center at
04. )

The tank shown in Figure 1 has the same geometry as

the S-1VB LH2 tank and as such is the most complicated of the

LH2 tanks in the Saturn V vehicle. Consequently an analysis

carried out for this tank may be easily applied to the fuel

tank of the S-IC or the LH2 tank of the S-II stage. 1In both

of these tanks the lower end is closed out by a single semi-
ellipsoid (in the S-II stage it is inverted while in the S-IC
stage it is regular).

The liguid is assumed to be incompressible and inviscid,
these being valid assumptions for the liquid propellants to be
studied. The free surface of the liquid is assumed to be any-
where between the lowest point, defined by the intersection of
S1 and S2, (see Figure 1), and the highest point of the tank.

The space between the free surface and the top of the tank is
occupied by ullage gas whose dynamics will be ignored here.

The mass matrix for the liquid depends on the degrees-
of-freedom chosen to represent its motion. It may be easily
shown (see Section 3) that the motion of the fluid is completely
determined once the motion of its boundary is known. Hence
the degrees-of-freedom for the liquid can be chosen to be those
used to represent the tank structure (with the exception of the

ligquid free surface).+ These degrees-of-freedom are the

-T.
see note on page 6.
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vertical (Z) and radial (R) displacements of the boundary
points (P), as shown in Figure 1. While these points will
be chosen to make the stiffness matrix calculation for the
tank as simple as possible, for the finite difference solu-
tion they must be chosen such that

(i) corresponding points on bulkhead S1 and S2
are in the same horizontal level,

(ii) corresponding points on bulkhead S2 (or S1)
and S4 lie on the same vertical lines. (See
Figure 1.)

3. DERIVATION OF THE LIQUID MASS MATRIX

In view of the connection between mass and kinetic
energy for a liquid, once a discrete form of the kinetic
energy is known the mass matrix can be easily found. The
procedure for finding the mass matrix is based, then, on
first finding the kinetic energy of the liquid in terms of
a finite number of normal velocities of the tank wall.

The kinetic energy of the liquid is

3 | vo-ovav , (1)

where p is the liguid mass density, v = v(r,z,t) is the
aXisymmetric velocity field, and the integration is carried
out over the volume V occupied by the liquid.

From the assumption that the liquid is incompressible
we find from the continuity equation

divv=20 . (2)

Furthermore for an invisid liquid, which is at rest initially,
we may assume the resulting motion is irrotational, i.e., there
exists a potential function ¢ = ¢(r;z,t) such that




<
i

Ve . (3)

Combining (2) and (3) we find

vie = 0 . (4)

Applying Green's first identity to the integral in
(1) and using (3) and (4) we find the equivalent expression
for the kinetic energy

where %% is the derivative of ¢ in the direction of the outward

normal to the liquid surface. The integration is extended over
the total bounding surface, ST, of the liquid, which includes

both the free surface area, SF’ and the wetted are of the tank,
S_.
S

Now on the free surface the pressure of the ligquid
equals the ullage pressure (which will be assumed constant)

and hence the linearized Bernouilli equation can be taken in
the form

)
e
+
L
N
o}
]
o
()}

Here a, is the inertial acceleration of the tank relative to
the local gravitational acceleration, n(r,t) is the instantaneous
free surface wave height, and 3¢ (r,t) is the velocity potential

ot
rate at the free surface.




Goldman [2] has observed that for hydroelastic
vibrations of tanks in rockets, which are accelerating at

moderate g levels (¥ 5g), to a good approximation ¢ satisfies
the equation

3¢ _
=0 (7)

on the free surface. For vibratory motion this is equivalent
to

4 =0 . (8)

Using (8) in (5) we therefore find for the kinetic
energy the simpler expression,

T=g $ 3L as (9)

where now the integration is only taken over the wetted area,

Ss of the tank.

Now the integral in (9) can be evaluated by using
the values of the integrand at N discrete points as

N
-] T (39
T=73 Z $:6:5Gn) . - (10)
i,j=1 J

where ¢ is the value of the potential at the ith point, (%%)
is the normal velocity of the liquid boundary at the jth point,
and Gij is a banded integration matrix. The elements of this

matrix may be found from (9) by assuming the potential function
and normal velocity to vary linearly with arc length between



two consecutive points Pi and Pi+ (see Figure 1l). (For more

1
details of the calculation of the G matrix see Reference [3].)
Since the liquid is inviscid, the compatibility condition
between the liquid and tank is

v, =

j g—i) G =1,8 , (11)

J

where vj is the normal velocity of the tank at the jth point.

From a finite difference solution of (4) subject to
the boundary conditions (8) and (11) we can find a relationship
of the form

b, = Z Q5 V5 (12)
j=1

with Qij a known matrix.

Substituting for {3%, and ¢. in (10) gives the required
3 i

Q2

\
discrete form for the kinetic energy

= P c
T = 5 E: VkaiGijVj . (13)
i,j,k=1

Finally the liquid mass matrix can be found by noting
from Lagrange's eguation (the governing equations for the motion)
that the inertial properties are contained in the terms
dt \3v, | r "ere

. (¢ = 1,N) are the generalized velocities.




Using (13) we find,

N N
d 3T _ P = ¢ y = -
It (a—ﬁ =3 Z Sk19%iCiyVy ¥ Z VikQiCi385,p (4=1/N)
i,j, k=1 i,j, k=1
N
_e s R -
= £ Z (94,84 *+ 938; )V, (2=1,N) . o

i,k=1

Hence in matrix notation the liquid mass matrix, M is given by
P = =T
M =3 [GQ + (GQ)] . (15)

4. FINITE DIFFERENCE SOLUTION

The central problem in the derivation of the
hydroelastic model by finite differences is the derivation
of the Qij matrix. As indicated, this is found by constructing

a solution for Laplace's equation (4) subject to the boundary
conditions (8) and (11). Since the motion is assumed axisym-
metric we need only consider the solution of ¢ in the quarter
section shown in Figure 1. From the assigned boundary points
the grid is constructed as shown in Figure 1. As previously

noted, the boundary points may be chosen at random so long as
they can be joined by vertical and horizontal grid lines and

there are grid points at the joins of the sections S1 and S2,
S2 and S3, etc.

In cylindrical coordinates, Laplace's equation (4)
has the form

2 2
3¢ 3 ¢ 3 ¢ _

or 3z

Il L

For convenience we introduce the non-dimensional variables
A = r/R and z = z/R, where R is the maximum radius of the
tank. In non-dimensional form (16) becomes




v 2n L2
e e e T (17)
9 A 0Z

where ¢(x,z) = ¢(r(x), z(z)) for all r» and z.

Approximating the terms in (17) by central differences
we find for the general interior point (i,j), Figure 2, the
equation

1 1 "
+ + ¢, . =0 , (18)
*5%4-1 8181—1)

¥ : . . "
:here ¢i,j 1s the approximation to ¢ at the point (i,j),

¢i-l,j is the approximation to § at (i-1,3), and so on.

® (i+1,))

i,ji-1 & \ & ® (i, j+1)

FIGURE 2 - GENERAL INTERIOR POINT




For points on the axis we note that Laplace's
equation has the form

2n 2n

237 ¢ a ¢
+ —5 = 0 . (19)

2A2 3z

The corresponding finite difference approximation is

-2 + -1 m + -1 g
32 1,341 T B (8 7B Yi-1,3 T B (R, 7B fitl,;
2 1 ) v
+ + 6. . =0 . (20)
(ajz BiBi_1) 143

To complete the finite difference solution we must
add equations for the boundary points. Since the potential
at the free surface is zero we need only write equations for
the boundary points in contact with the tank wall. At these
points (taking account of the normalization)

(a

where as previously stated A is the normal velocity of the tank

Rv. (i=1,N) , (21)

5le

i

at the point i. The next step is to suitably express (%%) in

terms of the potential at the boundary and interior points.
Here a first order approximation to the derivative (%% is

sufficient since the approximations to the interior points are

only to this order [4]. Since the expression for (a¢) varies
with the geometry of the tank the equations for the boundary
points on S1, S2, S3 and S4 must be considered separately.
Furthermore, the corner point at the dlscontlnuous intersection

of S1 and S2 needs special consideration.




Boundary Point on S1

The normal at the point PO makes an angle of “0

with the horizontal. The mesh points adjacent to PO in the

horizontal and vertical directions are Pl and Pz, respectively
{see Figure 3).
FIGURE 3 - BOUNDARY POINT ON S1
Now resolving along the normal gives
(an)P = (M)P cos Q4 (az)P sin a4 . (22)
0 0 0

Using the first order approximations

4] n
. 5@ : ey )
P, 0
) (23)
- $(P.) - $(P.)
(_g%) _ 2 : 1
P, 0 )




we find the equation for the boundary point on S1 to be

cos @ sin £ sin W cos W
0 v 4V
—2 %) - —2 Y@, 4+ 0. Ol %(py) = rRv.  (24)

0 8o %o %0 0

Boundary Points on S2, S3 and S4

The equations for these boundary points can be
derived in the same way as those for the surface S. The
exact form of these equations is given in Appendix A.

Corner Point at the Intersection of S1 and S2

To facilitate the numerical integration of the

kinetic energy expression, (9), in the neighborhood of PO

(see Figure 4) we identify two normals: one associated with
the direction of VO’ which is perpendicular to the surface S1

and makes an angle of QO with the horizontal; the other

associated with the direction of VOs’ which is perpendicular

to the surface S2 and makes an angle of QOS with the horizontal.

FIGURE 4 - CORNER POINT AT INTERSECTION OF S1 AND S2




Unfortunately this "double" normal poses a problem in the
finite difference solution where we need to define a relation-
ship between the normal velocity and the potential at P,.

To accommodate this we use the following approximation. Let
the normal associated with V0 be shifted to intersect the

surface S1 at a horizontal distance g and vertical distance,
0 from the point Py- Similarly let the normal associated

with Vi intersect S2 at distances ¢, and ¢, (see Figure 6).

0

Mow for 8./a.. 6,/a, and e./R. sufficiently small we can still
070 1771 0770 -

assume the normals intersect at PO thereby facilitating the

numerical integration. On the other hand for the shifted
positions it is possible to formulate well defined boundary
conditions thereby solving the finite difference problem.

FIGURE 5 - SHIFTED NORMALS AT CORNER PRINT Po
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These are,

" N 1 60 n + 60 v v
3 -3 “ % vt e f2,8-1 T %1,x
_ l,nC "1,N . 0 0
VO = =-CO0S8 QO S ~-sin QO P
0 "1 0
and
§ 8
1 1 "
b -3 - % vt o %2841 7 %1,ncC
—_ lINC l,N . l l
v = cos ~sin @
Os Os 60+61 Os BO - €

where we have made a linear interpolation to obtain the value of

the potential at points Pl' and Pl". Note that due to the

shifting procedure the equation for the adjacent interior point

Pl will be modified to

—(l+€0/80) ,(\5 . -1 1 _;l__) N (50/80) } %

-1

. A $ + il S I 2 + 1 )
81(80+81) 3,N (al+a0) oy 2x{72,N+1

1 1

"
+ + l) ¢2,N =0 . (27)

aq0q BOB

This completes the formulation of the finite difference equations.
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Solution for the Q Matrix

Combining the equations (18, 20, 24-27, Al-A3) for
the interior, axis, and boundary points for ¥ we find

Y ..
[Aij]{¢j} = R{vj} (i, = 1, NT) (28)

where Aij is a known coefficient matrix, {Ej} is column vector
of the potential values at each of the grid points (NT of them),
and {vj} is a column vector of normal velocities or zeros
(depending upon whether j indicates a boundary point or an
interior point).

Premultiplying (34) by [Aij'l], we find
(3.1 = ria, . N1{v.} (29)
037 = RiByq vyl

Picking only those values of i which correspond to boundary
points we find the reduced system

] {vj}b , (30)

b
where R[Aij ] corresponds to the required Qi' matrix.
From the Q matrix the normal matrix can now be computed

as explained in section 3. This concludes the theoretical
development for the liquid mass matrix.
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5. NUMERICAL RESULTS

A computer program, CTANKl, was written to compute
the liguid mass matrix for a cylindrical tank of the type
shown in Figure 1. A flow chart and description of this
program are given in Appendix B.

Sample Problem

Using this program the liquid mass matrix has been

found for the following configuration (see Figure 1):

Cylinder radius = 10 in.

Lower Bulkhead (S2) = 10 in. rad. (spherical)

Invented Bulkhead (S83) 10 in. rad. (spherical)

Upper Bulkhead (S4) = 10 in. rad. (spherical)

Distance (02 - 01 z02 5.8 in.

Distance 04 - 01 204 15.0 in.

Ligquid level above 01 4 h0l = 15.3 in.

Liquid density = 0.000376 1lbf = secz/in

]

e He>

4

The finite difference grid has been laid out as shown
in Figure 1 resulting in fifteen boundary points on the tank
surface. Using vertical (Z) and radial (R) degrees-of-freedom
this results in 22 degrees of freedom for the ligquid mass matrix.
The mass matrix is shown in Table 1 (Z and R mass). The ordering
of the degrees-of-freedom are Zl’ 22, R2, Z3, R3, ey R7, R8'

R9I Rlol Rll' e o o Rl4’ RlS-
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Validity of Results

To examine the validity of the derived mass matrix
it is normal to first generate a stiffness matrix for the
tank containing the liquid and then to use this, together with
the mass matrix, to determine the natural frequencies of the
liguid-tank system. These natural frequencies are then com-
pared to theoretically or experimentally obtained natural
frequencies thereby providing a check for the mass matrix.
In the absence of any such results for tanks of the geometry
considered here some alternate checks had to be made.

Since from (15),
= L
M= p/2[GQ + [GQ]"]

the correctness of the matrices G and Q imply the correctness
of the liquid matrix, M. The method for checking the integra-
tion matrix, G is straightforward and will not be discussed

-1.b
here. The matrix Q (or equivalently [Ai' l]=) was checked in

the following way. ]
A solution to, Laplace's equation (17) subject to
the boundary condition ¢ = 0 on z = 15.3 (i.e., 2z = 1.53) is
$(r,2) = Jy(\)sinh(z - 1.53) . (31)

From (31) we find the normal derivative to be

V)
93¢ _ . _ _ _ .
s Jl(A)51nh(z 1.53)cos QO JO(A)cosh(z 1.53)sin QO (32)

where as Lbefore QO is the angle of the outward normal with the

horizontal (A) direction. Now at each of the boundary points we




can compute from (31) the value of the potential % where

Th
v
the subscript 'Th' indicates the theoretical wvalue of 4.
\
From (32) we compute the value of %% at each of the boundary
points. (Note that they are two values associated with the
corner point P7.)

Now using (21) in (30) we find

b

o _ -1 9

&

(i,7 = 1, N+1)

o]

j

v
so from the boundary point wvalues of (%%) we find a set of

boundary point values for %. The deviation of these values
b
l] and
Qij matrices. For the sample problem solved here the values
are shown in Table 2. It is seen that the maximum error is
4.4%, which reduces to approximately 2.6% as one leaves the
neighborhood of the corner point. Bearing in mind the
coarseness of the finite difference grid this shows the
b

[Aij ] is being correctly determined.

from $TH is a measure of the accuracy of the [Aij_

The second check that was made is a global check
for the mass matrix and consists of using the Matrix M to find
the total weight of the liquid. For the sample problem it was
found:
Total weight (theoretical) = 1.0 units,
Total weight (computed from M) = 0.9956 units,

Percent error = 0.44%,.
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"

Point XTh ¢Comp $ Error
Py - .5552 - .5698 2.64
P, - .5724 - .5807 1.44
Py - .6409 - .6541 2.04
P, - .7699 - .7937 3.10
P - .9245 - .9587 3.70
P -1.0555 -1.0965 3.88
P, -1.2409 -1.2955 4.40
P -1.2409 ~-1.2944 4,31
Pg -1.0016 -1.0428 4.11
Py - .8413 - .8755 4.07
Pio - .6592 - .6851 3.92
P11 - .5146 - .5335 3.66
Pis - .4424 - .4573 3.37
Plé - .4248 - .4387 3.28
Py - .2815 - .2895 2.86
Pic - .1385 - 1421 2.64

_lb
Table 2 -~ LOCAL ERROR IN [A 7] MATRIX




Comparison with "Statical" Mass Matrix

The configuration for the sample problem was chosen
so that the total mass of the liquid was unity. This enables
the reader to see from Table 1 how the mass is distributed to
the degrees—-of-freedom. 1In particular it is interesting to
compare the distribution with that obtained from a "statical”
analysis. (In such an analysis the mass associated with a
given degree of freedom is derived from the weight of the
column of liquid above the corresponding node point.)

For the statical mass matrix the only non zero terms

are
(z1, Z1) = .630 - 02 (.236 - 02)
(22, 22) = .740 - 01 (.153 - 01)
(z3, z3) = .159 + 00 (.480 - 01)
(Z4, 24) = .236 + 00 (.689 - 01)
(z5, 25) = .211 + 00 (.497 - 01)
(z6, Z6) = .152 + 00 (.377 - 01)
(27, 27) = .990 - 01 (.316 - 01)
(z8, 28) = .350 - 01 (.320 - 02)

where the corresponding terms for the hydroelastic matrix are
shown in parenthesis. It is seen that the "statical" masses
are consistently higher than those obtained from the hydro-
elastic analysis. Furthermore the statical matrix lacks any
components associated with the radial degrees-of-freedom and
any coupling between the degrees-of-freedom which, for a liquid
representation is a serious defect.

6. CONCLUSIONS

In this memorandum a procedure is described for
finding the mass matrix of an incompressible, inviscid liquid
contained in a cylindrical tank with an inverted lower bulk-
head. A computer program, CTANKl., has been written which
on input of the tank dimensions, the liquid density and a
consistent set of boundary point locations, can be used to
compute this mass matrix.

A sample problem has been solved using this program,
and two theoretical checks carried out on the computed mass
matrix. These checks showed the accuracy of the numberical
method to be very good. Furthermore, the program has been
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used to derive mass matrices for the S-IVB LH2 at various

flight times. When these matrices were incorporated into

an overall structural model of the S-IVB and a vibration
analysis carried out, the predicted structural response
correlated well with flight data. This work will be described
in a forthcoming report.
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APPENDIX A

In this appendix the equations for boundary points
on the surfaces S2, S3 and S4 are given.

Boundary Point on S2

FIGURE A1-BOUNDARY POINT ON S2
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Boundary Point on S3

cos Q

a

0

0

?E(Pl) -

M

%o

1Po
\S

Yo

3

FIGURE A2 - BOUNDARY POINT ON S3

Boundary Point on S4
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FIGURE A3 - BOUNDARY POINT ON S4
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APPENDIX B

In this appendix the computer program CTANK1.,
which is suitable for use with the UNIVAC 1108, is described.
Here we will restrict the description to the basic version
of CTANK1l. which is suitable for configurations where the
liquid level is below the start of the upper bulkhead S4.
Furthermore, it is restricted to those configurations where
the total number of grid points is less than 200. (See Note
on page B2).

A flow chart showing the main operations in the
program is shown in Figure Bl. The input is in two parts
as follows:

SFIRST
N = Number of boundary points on Sl.

NT = Number of boundary points on S2 including the
intersection points with S1 and S3.

NS = Number of boundary points on S3 excluding the
intersection point on S2 and the free surface.

Print parameter: If = 1, A and A_l are printed.
If = 0 only those items shown in flow chart.

IP

SEND
$INPUT

ZEE = Single array, of size (N+NT-1+NS), of boundary
point heights above the origin Ol. The array
begins with the points on S1 (starting from
lowest) followed by the points on S2 and S3
(starting with the lowest but excluding the
corner point).

202

Al,Bl = Semi-major and minor axes of the ellipse
containing S1

Distance of the origin 02 above Ol.

A2,B2 = Semi-major and minor axes of the ellipse
containing S2.

WL Density of liquid propellant.

$END,.
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As an example, the input for the sample problem
discussed in section 5 is as follows:

SFIRST
N =7, NI = 3, NS =2, IP =0 ,
SEND
$INPUT
ZEE(1) = 2.9, 4.5, 5.8, 7.5, 9.0, 9.8, 10.0, 4.5, 5.8,
7.5, 9.0, 9.8, 10.0, 11.7, 13.5, 15.3,

zd2 = 5.8, Al = 10.0, Bl = 10.0, A2 = 10.0, B2 = 10.0,

WL = 0.000376,
SEND.

NOTE 1.

The total number of grid points is given by

N = (vr2eny + AEHD

Total {N+3NT-1} + NS (NT+N-1)

For the basic version of CTANKl., must not exceed 200.

NTotal




10

1"

12

13

READ INPUT DATA

I

COMPUTE NORMALIZED
COORDINATES A AND 2

COMPUTE a’s, 3's FOR
GRID AND ANGLES QO

PRINT o, 3, N AND 2

COMPUTE FINITE DIFFERENCE
EQUATIONS FOR S1-S2 REGION

COMPUTE FINITE DIFFERENCE
EQUATIONS FOR S1-S3 REGION

COMPUTE FINITE DIFFERENCE
EQUATIONS FOR S3 REGION

I

ADD SECOND EQUATION FOR
CORNER POINT, S1 M S2

PRINT A MATRIX

INVERT A MATRIX

14

15

16

17

18

19

20

21

22

23

24

25

26

27

PRINT A~
MATRIX?

PRINT A~ MATRIX

1

LOCATE [A" 1P MATRIX

1

PRINT [A~ 1P maTRIX

|

COMPUTE G MATRIX FOR
SECTIONS $1, S2, $3

1

ASSEMBLE G MATRIX
FOR WHOLE TANK

l

PRINT G MATRIX

l

COMPUTE NORMAL MASS

MATRIX
I

PRINT NORMAL MASS MATRIX

T

COMPUTE TRANSFORMATION MATRIX
FROM NORMAL TO Z & R COORDINATES

]

COMPUTE MASS MATRIX IN Z & R
COORDINATES

|

PRINT Z & R MASS MATRIX

MAKE TOTAL MASS
CHECK

FIGURE B1- FLOW CHART FOR BASIC VERSION OF CTANK1
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